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Concept model — cloud scale Pecic N
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» The timescale of dynamical responses (i.e., system
adjustment timescale) to latent heating, and the
feedback to/from the large-scale environment.

» Impact of wind shear on buoyancy and cold pool
in different storm systems; Storm dynamics: wind
shear-cold pool interactions.

» How significant are the microphysical effect of
aerosols? Is microphysical effect or invigoration
effect dominating at longer time scale over large
space?



1. System adjustment timescale to fTﬁ/

NATIONAL LABORATORY

-
I at e n t h e at I n g Proudly Operated by Battelle Since 1965

Mid-latitude warmed-based (black)

Tropical oceanic convection - GATE
and cold-based (red) convection

= C, latent heat release
=== M, heating
=== C, heating
=== M, cooling

— M, latent heat release
----- C, cooling

HEIGHT, km
Height (km)

25 2 0 i 2 3
Diff, of latent heat rate (K d")

G
LATENT HEAT RELEASE, K/hour

Khain et al. 2005, QJR Fan et al. 2012, GRL



Response to heating and cooling Morrison and Grabowski, 2013, JAS

— 0.30F

e Rapid adjustment within the first few hours
after convective initiation
e Convective vertical mixing timescale is~ 1 d

Response to partially perturbed
domain

unperturbed perturbed unperturbed

* Buoyancy anomalies were rapidly dispersed
by gravity waves. Little heating directly
drives convective invigoration.

0 10 20 30
Tirme fram 000 UTC 18 Januarv (hi
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Tropical convection: convection was in near-equilibrium with the large-
scale forcing

Mid-latitude convection: non-equilibrium with its environment; system

may not be able to adjust like the equilibrium system. Effects of latent
heat may have a greater effect on convection.

2. Impact of wind shear for different storm systems

on buoyancy and cold pool; Knowledge on storm
dynamics.
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more upright updraft.
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3. Microphysical and invigoration effects of aerosols

TWP

China

SGP

Cloud fraction change (%)
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Stratiform/Anvil
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Morrison and Grabowski, ACP, 2011

’ [
SW + LW = NET S LW LW
_(TWP)-8640.9 +56£05 = -3.0 (TWP)-17.8+1.5 +4.9+0.7 +6.7+08
O (SEC)-8.0+0.8 +43+05  -37 (SEC)-14.3+1.2 +3.4+0.6 +5.8+0.8
T (SGP)-6.3t0.9 +44:05  -1.9 (SGP) -9.7+14 +3.7+0.7 +5.70.7
O
% 05 +52 +47 0.9 +4.2 +6.7
é 03 +34 +3.1 06 +2.1 +5.4
< 0.4 +34 +3.0 06 +24 +53
§ 81408 +0.4+0.1 77 16.9+14 +0.740.1 0.0£0.0 T T T T
= 77407 +0.9+0.1 6.8 13.7+#1.1 +1.30.1 +0.4+0.0 10 -5 0 5 10
% 59+09  +1.0+0.1 49 9.1#1.3 +1.3+0.2 +0.4+0.1 Rod Tend (K day™)

e Strong upper level radiative warming stabilizes atmosphere, leading to
weaker convection.



4. Two-moment bulk scheme problems

Height (km)

-400 -200

Diff. in vertical mass flux (kg m® h™)

SBM

Morr-ICE

December 3, 2013

Cloud top height (km)

Cloud top height (km)

0

10

200 400

Height (km)

oOMnN B2 O @

-0.2 -0.1 0.0 0.1
Diff. in vertical velocity (m s™)

10

20 25 30 35
Time (hr)

0.2

Height (km)

Height (km)

Height (km)

60 80 100
Mean radius (um)

60 80 1
Mean radius (um)

00

120

i i 6 1 1 1 1
0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
Fall velocity (m/s) Fall velocity (m/s)
01 02 03 04 05 00 0.1 02 03 04 05

Cloud fraction

Cloud fraction



7
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Van Den Heever et al. 2011 Khairoutdinov and Yang 2013
30.0% Case 1.CLD| MCLD |HCLD| TCLD
(%) (%) (%) (%)
25.0% 0% - N IAS50 304 261 5186 5751
' 3 @ *f}..: ____ IA100 288 2.67 5181 5736
20.0% 1 & 5;";,-‘ ¥ ‘ﬁ - IA200 281 277 5145 57.02
o ] = K — IA500 276 289 | 5062 5627
sow{@ & & & B mMIDDLE IA1000 | 273| 314 |5136] 5722
A ;'w ;:; % ;ﬁ B HIGH IA2CO2 320 253 4992 5504
— st iR e s 22 FAS0 293 255 | 5171 5720
o8 s $ v i FA100 287| 266 |5181] 5734
0o | 8 Y i M 7 FA200 285| 279 |5144| 5708
i 7 (3B {'E : f EAS00 285 288 5021 5594
b e = o s FA1000 282 302 | 5019 5604
0.0% +— = = i
o (= o = o
= & g @ 3 e SWCF “ LWCF
= '
5 & & &8 g @ . ©
-18 47
E 1% § 4 .
-0 40
-2 ] 3% -~ IS5T
=a= F&ST
-12 38
1 100 | DO L1} 100 1000
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Evaporation/Sublimation

Haight (m)

1.0 10.0 Rainrate (mm/h) at 2 km cloudbase
—— —— Log-Normal Binned

Marshall Palmer Binned

Marshall Palmer 2-Moment (Morrison)

1400 | 20s |
1200 _ é Figure T%J' “, RH = 40%
1000 - —sBM courtesy \ SN
3 — Bulk-2M ] : N R RN I
800 ¢ — Bulk-org ] Richard : N,
eoot ] Easter \ N
Ot . . , 5 1.00 " \ _ i
50x10® 1.0x10* 1.5x10™ 2.0x10" T > &
Rain Evaporation @ Rain Points (a/Ka/s) \ > O\ >
Wang et al. 2013, JGR 0.50 - s
Leading to stronger low-level downdrafts and NV w L
cold pool. 0.00 \ o
0.00 0.50 1.00

Depositional growth

Water vapor deposition increases as the
shape parameter increases and ice
spectrum becomes narrower under a
certain N, and q; (Ovchinnikov et al. 2013, to
be submitted)

Rain Mass Evap. Fraction

Saturation adjustment

e When bulk schemes are applied to
LES/CRM, saturation adjustment for
condensation is not appropriate due

to small model timestep (Leo et al.
2012, ACP; Wang et al. 2013)

16



5. Aerosol-cumulus cloud interactions ~7
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» Cumulus convection is parameterized in the regional and
global climate models.

o Mass-flux based, no much microphysics

* No aerosol-cloud interactions considered by acting as
CCN/IN.

» Recent progress:

 Grell scheme has been modified to be scale and aerosol
aware (Grell and 2013, ACPD): very simplified connection in rain
formation and evaporation.

e Zhang and McFarlane cumulus scheme includes a two-
moment cloud microphysics (Song and Zhang, 2011; Lim et al. 2013)



Lim et al. 2013, JGR, in review

Rain gauge

1 2 3

dqgx/dt (ugkg™'s™)
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6. Impact of Ice Nuclel (IN) Pacific o=t

Proudly Operated by Battelle Since 1965

o500f _ Fanetal. 2010, GRL -

— L—

» What species are good IN?
 Mineral dusts
» Soot, biological, biomass burning

Anvil size (km?)
o
S
|
|

particles? :
500 n 7
» Ice nucleation parameterizations 100 200 300 400
 Recent parameterizations agree with S Time (min} 1
each other much better! = |
127 — 11
 Changing ice and liquid properties in _ > ]
' . 10 =41
the mixed-phase clouds complicates = | :
things! z 8 DW2004
.% [ — Meyers
T 6r =
I —— Niemand2012 ]
N Phillips2013
2f ]

T R,

0.10 0.15 0.20 0.25 0.30 0.35 19
Cloud fraction
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7. Lack of validation of model simulations Pacific Northwest

Proudly Operated by Battelle Since 1965

» Most of model simulations are idealized sensitivity studies (milbrandt and
Yau 2005 a,b; Dawson et al. 2009; Morrison and Grabowski 2011;2013; Morrison 2012; Lebo et al.
2012; van den Heever et al. 2006;2011, etc)

 Difficulty to trust model results (some may be way off).

 Difficulty to understand if there is improvement for a
change/parameterization.

» Real-case simulations and validation of model simulations with in-situ
aircraft and ground-based measurements (Fan et al. 2009; Fan et al. 2010;
Fan et al. 2012; Li et al. 2011, Fan et al. 2013).

» Future studies have to build on validation of model simulations with
observations first, and ARM data have made extensive validation
possible!

20
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Summary/Recommendations Pacifc Northuest..

Proudly Operated by Battelle Since 1965

» Microphysical effects, cloud life cycle, and large-scale feedback.

» Improve bulk scheme (e.g., predicted shape factor; Morrison new ice
scheme) for regional and climate models.

» Cumulus schemes with cloud microphysics and aerosol-cloud
Interactions.

» Extensive collaboration is required among GCM developers,
LES/CRM modelers, and observers to identify problems, evaluate and

further develop parameterizations.
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