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Physics of Stratocumulus Tops (POST)   
          July-August, 2008, NSF, CIRPAS Twin Otter 
Marine Stratus/Stratocumulus Experiment (MASE)  
          July, 2005, DOE, Gulfstream-1, G-1 
Same location off central California coast, same 
 season, summer, and same stratus clouds, 
POST– clean to polluted and intermediate conditions 
MASE—always polluted 
 
Rain in Cumulus over the Ocean (RICO) 
           December-January, 2004-05, NSF, NCAR C-130 
ICE in Clouds Experiment-Tropical (ICE-T) 
            July, 2011, NSF, NCAR C-130 
Same location northeast Caribbean, opposite seasons, 
             similar small cumulus clouds 
RICO—clean 
ICE-T—double concentrations of RICO 
 



project N N1% 
(cm-3) 

 Nc 
(cm-3) 

 W 
(m/s) 

 σw 
(m/s) 

Seff 
(%) 

k @ 
Seff 

RICO  16 106 89 1.13 0.85 0.64 0.38 
ICE-T   15 203 164 0.81 0.84 0.84 0.16 
POST  34 280 190 0.02 0.53 0.61 0.52 
MASE  50 634 240 0.01 0.15 0.19 0.82 

 

Project averages of flight averages: the threshold for cloud consideration                  
 is liquid water content (LWC) 0.1 g/m3.   
N is number of “flights”,  
N1% is CCN conc. at 1% S,  
Nc is cloud droplet concentration,  
W is mean vertical velocity,  
σw is standard deviation of W (Wsd),  
Seff is mean effective supersaturation of the clouds as determined by the 
 S for which CCN concentration, NCCN(S) equaled Nc.   
k is the log-log slope of cumulative CCN spectrum  at Seff 
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R2
adj is essential for multiple regressions 

         R2
adj = 1 – (1-R2)(n-1)/(n-p-1) 

  
n is the number of data points  
p is the number of parameters being regressed.   
 
Adjusted R2 are lower than R2 because some of the greater R2 of 
adding parameters is due to randomness and is an overprediction 
of the measurements due simply to the addition of more 
dimensions/parameters to the regressions.  This is especially true 
when the input parameters are uncorrelated with each other as 
would be the case for junk data.  Input parameters that are 
correlated with each other provide less improvement to R2. 



proj R 
N1%- 
Nc 

Radj 
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Radj 
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Nc 
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R 
NCCN(S)- 

Nc 

Radj 
NCCN(S)- 

Nc 

R 
[NCCN(S),W]- 

Nc 

Radj 
NCCN(S),W]- 

Nc 
POST 0.86 0.85 0.60 0.58 0.52 0.87 0.86 0.92 0.89 0.93 0.91 
MASE -0.36 -0.33 0.51 0.49 0 0.62 0.60 0.55 0.38 0.74 0.65 
RICO 0.83 0.82 0.44 0.37  0.22 0.85 0.82 0.94 0.89 0.96 0.92 
ICE-T 0.75 0.73 -0.01 - -0.04 0.77 0.75 0.97 0.91 0.97 0.92 

Flight averages of all cloud parcels 
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NCCN influence decreases with k 
W influence increases with k 
Higher k, steeper CCN slope, 
   Nc changes more for 
        same S differences, so W variations 
cause more Nc variations than NCCN 
variations. 
Low Seff of MASE makes higher k more 
relevant.  

Twomey (1959) 



In ICE-T, RICO and POST vertical velocity (W) seemed to 
play a minor role compared to NCCN for determining Nc. 
But in MASE W, actually Wsd (σw), dominated NCCN 
for determining Nc. 
Pollution suppresses cloud S thus making relevant  
only CCN at low S where k is higher.  
This favors W or σw variations over NCCN variations for  
determining Nc. Thus, the negative or noncorrelation of 
Nc with NCCN in MASE is resolved.  This limits IAE. 
For multiple CCN regressions, addition of W made little 
difference. 
Multiple regressions using entire CCN spectra showed 
superior regressions even when adjusted. 

Summary/conclusions 



Hudson and Noble, 2013:  CCN and vertical 
velocity influences on droplet concentrations and 
supersaturations in clean and polluted stratus 
clouds.  JAS, in press. 

Hudson and Noble, 2013:  Low Altitude 
Summer/Winter Microphysics, Dynamics and CCN 
Spectra of Northeastern Caribbean Small Cumuli; 
and Comparisons with Stratus.  Submitted to JGR 
in October. 
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Twin Otter in MASE
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Plot 2 Regr

b[0]	119.3407940158
b[1]	0.0999188983
r ²	0.1946879875

R = 0.44 

Lu et al. 2007, JGR 



Twin Otter in MASE
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Removing 4 lowest concentration flights 

Lu et al. 2007, JGR 
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