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Introduction

 Organization and the associated transport of
momentum by mesoscale convective system
(MCS) are important processes impacting climate
modeling.

e Multiscale modeling framework (MMF), however,
neglects the effects of the orientation of the MCS
and the GCM subgrid-scale momentum transport.

* The orientation and the GCM subgrid-scale
momentum transport by all clouds, including
MCSs, are parameterized and feeds back to the
host GCM In this study.



The Orientation of 2D CRM In a
GCM box (1)

The default 2D CRM/MCS in MMF is fixed in west-

east direction, no GCM subgrid-scale momentum
feedback.

In this study, the orientation of the 2D CRM is
determined according to Cheng (2005).

Its orientation changes continuously every GCM time
step (15 minutes) dependent on the vertical shear of
the horizontal wind (the vertical wind shear
thereafter), and the stability of the atmospheric
stratification.

Three distinct types of MCSs and the associated CRM
orientations are explained in the following slides.



The Orientation of 2D CRM In a
GCM box (1)

The MCS Is a mesoscale convective complex with
no preferred orientation and a round shape. The
wind shear Is weak.
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The Orientation of 2D CRM In a
GCM box (1)

The MCS is perpendicular to the wind shear. The
wind shear Is strong and the stratification Is very
unstable.




The Orientation of 2D CRM In a
GCM box (1V)

The MCS is parallel to the wind shear. The wind
shear Is strong and the stratification is less
unstable.
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Coupling between CRM and GCM
 CRM updated by
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Experiment Design

Control experiment: standard Community Atmosphere
Model (CAM3.5) with a 2D System for Atmospheric
Modeling (SAM) embedded; T21 with 26 levels in
vertical direction for CAM3.5; same vertical levels and
32 Columns in horizontal with 4 km grid-size for SAM,;
no momentum transport feedback.

Sensitivity experiment ORT: CRM changing Its
orientation but without momentum transport feedback to
the host GCM.

Sensitivity experiment CMT: with momentum transport
coupled between CRM and GCM dynamic core.

All experiments were integrated for two years and three
months under the climatological-mean conditions. The
results from the last two years are analyzed in the study.
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a) CTL 10° Pa s b) ORT - CTL 10° Pa s
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Summary

The orientation of the MCS and the associated momentum
transport parameterization have been implemented and
tested in an SPCAM.

The excessive precipitation in the warm pool region
decreases more than 5 mm per day because three types of
MCSs have been considered in the 2D CRM, which may
prevent the great red spot to occur.

Biases of u and v winds decrease.
More reasonable summer monsoon circulation is produced.

Heating and moistening are consistent with the u and v
fields, implying a weak Hadley cell in summer.
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